Differential Expression of the RANKL/RANK/OPG System Is Associated with Bone Metastasis in Human Non-Small Cell Lung Cancer
نویسندگان
چکیده
BACKGROUND Human non-small cell lung cancer (NSCLC) patients exhibit a high propensity to develop skeletal metastasis, resulting in excessive osteolytic activity. The RANKL/RANK/OPG system, which plays a pivotal role in bone remodeling by regulating osteoclast formation and activity, is of potential interest in this context. MATERIALS AND METHODS Reverse transcriptase polymerase chain reaction, western blotting, and immunohistochemical analysis were used to examine the expression of RANKL, RANK, and OPG in human NSCLC cell lines with different metastatic potentials, as well as in 52 primary NSCLC samples and 75 NSCLC bone metastasis samples. In primary NSCLC patients, the expression of these proteins was correlated with clinicopathological parameters. Recombinant human RANKL and transfected RANKL cDNA were added to the PAa cell line to evaluate the promoter action of RANKL during the process of metastasis in vitro and in vivo. RESULTS Up-regulated RANKL, RANK, and OPG expression and increased RANKL:OPG ratio were detected in NSCLC cell lines and in tumor tissues with bone metastasis, and were correlated with higher metastatic potential. The metastatic potential of NSCLC in vitro and in vivo, including migration and invasion ability, was significantly enhanced by recombinant human RANKL and the transfection of RANKL cDNA, and was impaired after OPG was added. The increased expression of RANKL and OPG correlated with tumor stage, lymph node metastasis, and distant metastasis. CONCLUSIONS Differential expression of RANKL, RANK, and OPG is associated with the metastatic potential of human NSCLC to skeleton, raising the possibility that the RANKL/RANK/OPG system could be a therapeutic target for the treatment of metastatic NSCLC patients.
منابع مشابه
Expression profile of receptor activator of nuclear-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) in breast cancer.
BACKGROUND Breast cancer, the most common cancer affecting women in the USA and UK, is known to have a high frequency of osteolytic bone metastasis. Receptor activator of nuclear-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) are a group of important regulators for osteoclast differentiation and activation. These molecules have been implicated in bone metastasis. Since the discovery o...
متن کاملCombined Hydroxyapatite Scaffold and Stem Cell from Human Exfoliated Deciduous Teeth Modulating Alveolar Bone Regeneration via Regulating Receptor Activator of Nuclear Factor-Κb and Osteoprotegerin System
Background: Tissue engineering using Stem cell from Human Exfoliated Deciduous Teeth (SHED) and a natural biomaterials biomaterial scaffold has become a promising therapy for the alveolar bone defect. The aim of this study was to analyze the Osteoprotegerin (OPG) and Receptor Activator of NF-Κb ligand (RANKL) expression after the application of Hydroxyapatite scaffold and SHED.Methods: A labora...
متن کاملRANK, RANKL and OPG Expression in Breast Cancer - Influence on Osseous Metastasis.
In women, malignant breast tumours are among the most common malignant diseases in Europe. In advanced breast cancer, the risk of bone metastasis increases to 65-75 %. The discovery of the physiological bone metabolism parameters RANK (receptor activator of nuclear factor-κB), RANKL (receptor activator of nuclear factor-κB ligand) and OPG (osteoprotegerin) as well as their pathophysiological in...
متن کاملRANKL-induced migration of MDA-MB-231 human breast cancer cells via Src and MAPK activation.
Accumulating studies have shown that the receptor activator of nuclear factor-κB ligand (RANKL)/RANK pathway plays an important role in tumor metastasis. However, the involvement of the RANKL/RANK signal transduction pathway in breast cancer metastasis remains unclear. The present study, therefore, investigated the role of downstream molecules of RANKL/RANK signaling in breast cancer cells usin...
متن کاملEffects of Brucine on the OPG/RANKL/RANK Signaling Pathway in MDA-MB-231 and MC3T3-E1 Cell Coculture System
The present study examined the effects of brucine on the OPG/RANKL/RANK signaling pathway for exploring the mechanism of brucine suppression of bone metastasis in breast cancer. MDA-MB-231 breast cancer cells and mouse osteoblast MC3T3-E1 cells were cocultured to mimic the breast cancer bone metastasis microenvironment in vitro. qRT-PCR and Western blotting were used to detect the expressions o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013